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Abstract The reciprocal interaction of landscape

structure and ecological processes is a cornerstone of

modern landscape ecology. We use a simulation

model to show how landscape structure and herbivory

interact to influence outbreaks of southern pine beetle

(Dendroctonus frontalis Zimmermann) in a landscape

representative of the southern Appalachian Moun-

tains, USA. We use LANDIS and its biological

disturbance agent module to simulate the effects of

landscape composition (proportion of landscape in

host area) and host aggregation on the size and

severity of insect outbreaks and the persistence of the

host species, Table Mountain Pine (Pinus pungens

Lamb.). We find that landscape composition is less

important in the modeled landscapes than host

aggregation in structuring the severity of insect

outbreaks. Also, simulated southern pine beetle

outbreaks over time tend to decrease the aggregation

of host species on the landscape by fragmenting large

patches into smaller ones, thereby reducing the

severity of future outbreaks. Persistence of Table

Mountain pine decreases throughout all simulations

regardless of landscape structure. The results of this

study indicate that when considering alternative

restoration strategies for insect-affected landscapes,

it is necessary to consider the patterns of hosts on the

landscape as well as the landscape composition.

Keywords Disturbance � LANDIS � BDA �
Insect outbreak � Table Mountain pine

Introduction

The reciprocal interaction between spatial pattern and

ecological processes is a central tenet of contempo-

rary landscape ecology (Turner 2005b). Spatial

pattern influences the lateral fluxes of matter across

landscapes (Peterjohn and Correll 1984), the move-

ment of animals, and the spread of disturbance

(Turner 1989; Turner et al. 1989). Disturbances such

as fire, insect outbreaks, and disease respond to

landscape pattern (Coulson et al. 1999; Gilbert et al.

2005; Jules et al. 2002). The reciprocal interaction of

spatial pattern and disturbance processes is an

important topic in landscape ecology and also
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influences forest management planning and decision

making (Coulson and Stephen 2006). Because they

are spatially structured, insect outbreaks create

excellent conditions for investigating the interaction

of spatial pattern and ecological processes. Insect

herbivory is influenced by both the composition of

the landscape (i.e. what types of landscape elements

are present and how many) and the configuration of

those landscape elements (Coulson and Wunneburger

2000). Of particular interest is the impact of insect

herbivory occurring in mesoscale forest landscapes

over successional time.

The influence of spatial structure on insect

outbreaks can be approached either from the point

of view of the insects or from the plants upon which

they feed. Classical insect population models ignore

spatial heterogeneity, but recently, metapopulation

models have been used to investigate the impacts

of landscape heterogeneity on population dynamics

(cf. Gamarra 2005). Although metapopulation

approaches have advanced our understanding of

insect populations, by nature of being insect-centered,

they do not easily consider the reciprocal nature of

the relationship between insects and landscape struc-

ture. The explicit linkage between landscape structure

and insects has been addressed through correlational

studies (Powers et al. 1999; Radeloff et al. 2000;

Roland 1993) and simulation modeling (Sturtevant

et al. 2004). Often the linkage between pattern and

process in these studies has been based on a simple

relationship between a measured property of the

landscape and a dependent variable describing either

the population size or the impact of insect activity

(e.g. Gilbert et al. 2005; Radeloff et al. 2000; Roland

1993).

Questions in landscape ecology often are

addressed using simulation models. Simulation

models provide the benefit of analyzing large areas,

multiple landscapes, and/or relatively long time

periods while controlling initial conditions and

the processes included. Thereby, the relative impor-

tance of particular processes and their interactions

can be investigated. An important step in a simulation

modeling effort to understand disturbances within a

landscape ecological context is to explore model

projections of a single disturbance agent without the

interacting influences of other disturbances. In this

paper we explore how simulated insect outbreaks

interact with landscape structure within the context of

the LANDIS model (He et al. 1996; Mladenoff et al.

1996). Our investigation is based on outbreaks of

southern pine beetle (SPB, Dendroctonus frontalis

Zimmermann (Coleoptera:Curculionidae)) in Table

Mountain pine (Pinus pungens Lamb.) forests of the

southern Appalachian Mountains. Table Mountain

pine is endemic to the Appalachian Mountains, and is

the most common pine species in mid-elevation

ranges. SPB attacks various pine species throughout

southeastern North America. It occasionally infests

other conifers, but never hardwoods. The Appala-

chian pine-SPB system provides a useful case for

examining interactions between landscape structure

and insect outbreaks because of the host specificity of

SPB and the contagious nature of SPB infestations,

combined with a patchy distribution of pine stands on

xeric sites within a hardwood forest matrix. More

generally, this modeling exercise should be relevant

to insect outbreaks in landscapes where patches of

host vegetation are interspersed with non-host

vegetation.

We previously applied LANDIS to simulate suc-

cessional dynamics on hypothetical landscapes

representative of the southern Appalachian Moun-

tains, and to investigate the interacting influences of

fire and SPB on succession (Lafon et al. 2007;

Waldron et al. 2007). The work presented here

extends our previous efforts by considering implica-

tions of spatial patterns for insect-host interactions on

simulated (neutral) landscapes with varying configu-

rations of host vegetation. Clearly, any modeling

endeavor, particularly one using neutral landscapes,

involves simplification and abstraction of the actual

system. However, this work is a step toward under-

standing potential interactions between landscape

structure and SPB herbivory on actual Appalachian

landscapes, where the varying configurations of pine

offer potential opportunities for modeling experi-

ments and empirical studies to investigate such

interactions.

SPB outbreak patterns are of considerable interest

in the Appalachian Mountains because of recent

heavy losses of pine from SPB (e.g. Lafon and Kutac

2003), and because Table Mountain pine is a

conservation priority (Williams 1998). SPB outbreaks

occur cyclically with a period around 7–10 years in

the Piedmont and Coastal Plain, and less frequently in

the southern Appalachian Mountains (Price et al.

1998). Although the factors that lead to the initial
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development of an outbreak are not completely

understood, there may be relationships between

outbreaks and extreme environmental conditions

(Gan 2004). Also, the outbreaks in a single year

appear to be influenced by spatial structure (Coulson

et al. 1999). For example, the arrangement of

lightning-struck trees influences the spread of infes-

tations (Coulson et al. 1999).

The objective of this research is to study the effects

of landscape pattern on the characteristics of SPB

outbreaks and to show the impact of such outbreaks on

the spatial pattern of forests using a spatially explicit

landscape model. We are interested in the impact of

spatial structure, as measured by standard landscape

metrics, on the size and severity of outbreak patches

and on the ability of simulated landscapes to maintain

pine stands. We specifically pose the following ques-

tions: (1) Are landscapes with highly aggregated pine

stands more vulnerable to severe SPB outbreaks than

landscapes with smaller, less aggregated stands? (2) If

aggregated landscapes are more vulnerable to SPB, is

the initial landscape structure erased over time follow-

ing multiple SPB outbreaks? (3) Do highly aggregated

landscapes have more extensive SPB outbreaks than

less aggregated ones? and (4) In the presence of SPB,

does pine persist at higher levels on less aggregated

landscapes than aggregated landscapes? We use a

spatially explicit simulation model (LANDIS: He et al.

1996; Mladenoff et al. 1996; Mladenoff and Baker

1999) together with the biological disturbance agent

(BDA) module (Sturtevant et al. 2004) on hypothetical

landscapes with known landscape pattern properties to

answer these questions.

Methods

LANDIS

LANDIS is a stochastic, spatially-explicit, raster-based

computer model that simulates forest succession and

disturbance across large areas (103–107 ha) and over

long time periods (101–103 years) (He et al. 1996; He

and Mladenoff 1999; Mladenoff et al. 1996; Mladenoff

and He 1999). LANDIS was developed to simulate

succession as well as harvesting, windthrow, and fire

disturbance in the upper Midwest (Mladenoff 2004).

More recently, LANDIS has been used to simulate

landscapes in regions of varying ecological and

topographic complexity, e.g., the Missouri Ozarks

(Shifley et al. 2000), southern California (Syphard and

Franklin 2004), and the southern Appalachian Moun-

tains (Lafon et al. 2007; Waldron et al. 2007).

In LANDIS, the presence or absence of 10-year

age cohorts is simulated for each cell on the

landscape. Cell size can be scaled from 10 to

500 m. For each cell, LANDIS manages user-defined

species life history traits (longevity, minimum age at

reproduction, shade tolerance, fire tolerance, mini-

mum/maximum seed dispersal distances, and resprout

probability) to drive competition and succession at

10-year time steps (He et al. 2004). A species

establishment coefficient, which represents environ-

mental conditions, governs establishment of each

species. A landscape can be subdivided into multiple

landtypes, with each landtype possessing different

environmental conditions. LANDIS can simulate

disturbance by fire, wind, harvesting, or biological

agents (insects, disease) (Sturtevant et al. 2004).

BDA

Biological disturbances in LANDIS are modeled

using the BDA module (Sturtevant et al. 2004).

Biological disturbances are probabilistic at the site

level and are dependent on a calculated site vulner-

ability value (SV). SV is a function of the quality and

quantity of food resources, which are dependent on

the species composition and age structure present. SV

is modified by a regional outbreak status (ROS) value

that represents the background level of outbreak

activity and by a neighborhood modifier that accounts

for the effects of landscape context (Sturtevant et al.

2004). The SV value for a cell is used to determine if

an SPB outbreak occurs on that cell. The severity of

an outbreak is based on the value of SV.

BDA represents some aspects of SPB outbreaks

well. First, it incorporates (via the ROS) cyclic

variation in outbreak occurrence across the land-

scape, consistent with the broad-scale periodicity of

SPB activity (Coulson et al. 1999). Second, as in

actual SPB outbreaks (Gumpertz et al. 2000),

outbreak severity varies both spatially (during a

single outbreak year) and temporally (between out-

breaks occurring in different years). Third, tree

susceptibility varies by species and age in BDA. In

a sensitivity analysis of the BDA, Sturtevant et al.
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(2004) found that the most important factor control-

ling probability of disturbance in BDA was the

composition of species and age-cohorts in the sim-

ulated landscape. Studies of SPB outbreaks suggest

that tree species and age are important factors

controlling outbreak characteristics (e.g. Coulson

1981; Fettig et al. 2007). Fourth, the neighborhood

modifier in BDA represents mechanisms by which

the mix of tree species/ages in a forest neighborhood

can influence herbivory, as observed in actual forest

stands (Schowalter and Turchin 1993; Zhang and

Zeide 1999; Jactel and Brockerhoff 2007). The

neighborhood modifier also imparts spatial coherence

in outbreak activity, which corresponds with the

patchiness of actual SPB outbreaks arising from the

growth of infested spots (Fettig et al. 2007).

Because the landscapes we simulate are relatively

small (roughly 5 9 5 km) with similar macroclimatic

conditions throughout, and because our emphasis is on

the influence of landscape structure rather than the

effects of temporal climatic variability, our analyses do

not incorporate the effects of host condition resulting

from climatic stress (cf. Fettig et al. 2007). Similarly,

because LANDIS operates on a decadal time step, the

growth of SPB infestations over the course of a

growing season (cf. Fettig et al. 2007) is not simulated.

Rather, BDA simply calculates the ultimate size of

each infested spot that is generated during the decade.

Our interest here is only in the total area infested, and

therefore we do not need BDA to simulate seasonal

patterns in the spread of infestations. Although insect

dispersal is an important factor in structuring out-

breaks, it is not included in this study. The assumption

of synchronous outbreaks is acceptable for our study

because SPB is capable of relatively long-range

dispersal ([1 km within a few days) (Turchin and

Thoeny 1993) and SPB outbreaks typically exhibit

spatial synchrony at the scale of the landscapes we

simulate (Coulson et al. 1999). Although the LANDIS-

BDA is not capable of simulating every aspect of insect

disturbances, its balance of detail with parsimony

makes it a powerful tool for investigating the interac-

tion of pattern and process in insect outbreaks.

Model parameterization

Our simulations represent a pulsed outbreak with a

mean recurrence interval of 25 years and a standard

deviation of 5 years. The minimum ROS = 0 and the

maximum ROS = 3. The product of SV and (ROS/3)

produces the final SV. A minimum ROS of 0 ensured

that some iterations in our simulations do not

experience an SPB outbreak. BDA calculates the

probability of an outbreak for the entire landscape

based on the outbreak type selected. The pulsed

outbreak type ensures that outbreaks do not occur

every year. Because the determination of the outbreak

status is probabilistic, there is the potential for

multiple outbreaks to occur within 25 years of each

other, but if the simulation were run for a long

enough time, the average return interval for outbreaks

would be 25 years.

The neighborhood characteristics are particularly

important in this study because without including

them each cell would be independent with regard to

the determination of SPB infestation probability and

severity. We used a neighborhood radius of

30 meters (3 cells) to calculate the neighborhood

effect (i.e. mean Site Resource Dominance). We did

not employ any distance decay in the calculation of

the neighborhood modifier (i.e. all cells within the

30 meter radius have equal effects on the mean).

We included 11 tree species: 10 deciduous hard-

wood species and 1 pine (Pinus pungens). P. pungens

was the only species susceptible to SPB attack. The

species life history parameters (Table 1) are the same

as those used previously for the southern Appalachian

region (Waldron et al. 2007). We defined the ages at

which P. pungens is a minor host, secondary host and

primary host (sensu Sturtevant et al. 2004) to be 20,

40 and 50 years. Minor hosts have a relative resource

value equal to 0.33. Values for secondary and

primary hosts are 0.66 and 1.0. These values are

calculated for each cohort of trees on a cell and

averaged across all cohorts to determine the SRD

value for the cell. The same ages were used to

distinguish among the resistant, tolerant and vulner-

able host categories for P. pungens. The differences

among resistant, tolerant and vulnerable host catego-

ries lie in the amount of damage caused by an SPB

infestation occurring on a cell. Low-severity out-

breaks (Category 1) occur when SV \ 0.33, and kill

all vulnerable cohorts. Medium-severity outbreaks

(Category 2) have SV between 0.33 and 0.67, and kill

all tolerant and vulnerable cohorts. High-severity

outbreaks (Category 3) with SV [ 0.67 kill all

resistant, tolerant and vulnerable cohorts on a cell.
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Experimental design

Landscape creation

The neutral landscapes were created using RULE

(Gardner 1999). Twelve sets of landscapes were

created, each with a different structure in terms of the

spatial distribution of pines versus hardwoods.

The twelve sets represent different combinations of

the proportion (p) of cells occupied by pine (two

levels) and the fractal dimension (h) of the landscape

(six levels). The two values of p are 25% and 40%,

corresponding to maximum levels of pine likely to be

found on the hardwood-dominated Appalachian

landscapes. Values of h are 0, 0.1, 0.2, 0.3, 0.4, and

0.5. Higher values of h indicate less landscape

fragmentation (Fig. 1). For each of the 12 combina-

tions of p and h, 10 different landscapes were created.

Each landscape has dimensions 512 9 512 cells, and

each cell is 10 9 10 m (corresponding to the foot-

print of a single tree). Each landscape is 2,621.44

hectares.

The landscapes created by RULE are necessarily

artificial. However, the objectives of this study

require that we vary the proportion of pines on the

landscape along with the spatial configuration of

those pines to evaluate the effect of pattern on

process. Because the creation of replicate landscapes

based on real-world locations would be nearly

impossible, the use of these neutral landscapes is

preferred. Li et al. (2004) tested the effectiveness of

RULE-generated landscapes for representing real

ones, and found that the neutral landscapes are

satisfactory surrogates for real landscapes. There are

cases when RULE-produced neutral landscapes are

not adequate, for example when particular landscape

elements, such as streams, necessarily must be

grouped in particular ways (Li et al. 2004). However,

these conditions are not present in our landscapes and

therefore we are confident that the algorithm used to

create the neutral landscapes is not overly influencing

our results.

Populating the landscapes

Each neutral landscape is an example of a dry mid-

elevation slope within the southern Appalachian

Mountains. The choice to restrict the simulations to

a single landtype is a simplification that allows us to

concentrate on the importance of pattern without the

confounding effects of different establishment coef-

ficients among landtypes. We chose the southern

Appalachian Mountains as the general landscape type

for this study due to recent severe SPB outbreaks in

old pine stands there that are the legacy of land use

history, and because of the presence of P. pungens,

which is a conservation and restoration priority. At

the outset of each simulation, cells were populated

with a single species. Host cells contain only

P. pungens. Non-host cells may contain any of the

non-host species in the proportions equal to those

used for mid-elevation southeast—west facing slopes

by Waldron et al. (2007). All P. pungens cohorts

placed on the initial landscape are the same age

(10 years).

Simulations

Simulations were run for 150 years to permit multiple

SPB outbreaks to occur, but without having Pinus

pungens approach its maximum lifespan. Hence the

relationships of SPB-caused pine mortality to land-

scape structure were not obscured by age-related

mortality. At 10-year intervals LANDIS produced

maps of species/cohort presence/absence and out-

break intensity. The proportion of the landscape

Table 1 Life history parameters for species in LANDIS

Species Lnga Mat Shd Fire Resprout Estab

Acer rubrum 150 25 4 1 0.9 0.152

Carya glabra 300 40 2 2 0.5 0.211

Nyssa sylvatica 200 25 4 2 0.3 0.229

Oxydendrum
arboreum

100 50 3 2 0.9 0.229

Pinus pungens 250 20 1 5 0.3 0.083

Quercus alba 450 30 3 3 0.5 0.08

Quercus rubra 300 25 2 3 0.4 0.211

Quercus coccinea 130 25 1 3 0.4 0.041

Quercus prinus 350 25 3 3 0.9 0.115

Quercus velutina 150 25 2 3 0.7 0.106

Robinia
pseudoacacia

100 15 1 1 0.9 0.375

a Parameter abbreviations: Lng = Longevity; Mat = Maturity;

Shd = Shade tolerance; Fire = Fire tolerance, Resprout =

Resprouting probability; Estab = Establishment coefficient
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occupied by pine was calculated for each year in each

simulation. Because LANDIS is a spatial model

incorporating important spatial processes, the land-

scape structure will change over time. Cells that

previously did not contain pines were considered

non-host cells. If a pine cohort invaded a non-host

cell it became a host cell.

Spatial metrics

Landscape and class metrics were calculated for each

landscape in each output year using Fragstats

(McGarigal and Marks 1995). We used the clumpi-

ness metric to represent the aggregation of pines for

every output landscape (10 years apart). Although the

initial landscapes were created in RULE using h

values to specify the amount of aggregation, h cannot

be calculated for an existing landscape. Therefore, we

used the clumpiness metric as a proxy for h. We

found good correspondence between h and clumpi-

ness for the initial landscapes (data not shown).

Higher values of clumpiness correspond to more

aggregated landscapes.

Results

Outbreak timing and area

Outbreaks did not occur before year 40 in any of the

simulations. At year 40, the first year with vulnerable

hosts present, outbreaks began to appear, and con-

tinued every decade (Fig. 2). These results are

aggregated across all realizations for each set of

initial conditions. Therefore, although the figures

show outbreaks every decade, this is only true for the

collection of realizations and not for an individual

landscape. Although the return interval of outbreaks

is the same for all of our simulated landscapes, the

realizations are not synchronized in regard to out-

break timing.

The initial infestations were dominated by

Category 2. Category 1 infestations did not appear

until year 50. Landscapes with higher initial values of

h had a higher frequency of Category 3 outbreaks

than did landscapes that were initially more patchy

(i.e. low h values). This was true at both levels of

p (Fig. 2).

Changes in landscape structure

Landscapes became less fragmented over time as

large contiguous patches of pine fragmented into

smaller ones (Fig. 3). The impact of the early SPB

outbreaks in years 40 and 50 appeared as dramatic

reductions in the clumpiness metric. These trends in

landscape structure were robust across the simula-

tions and were not dependent on either p or h.

However, there was an enduring effect of the initial

landscape aggregation throughout the simulation.

Landscapes that were more highly aggregated ini-

tially retained higher clumpiness values throughout

the simulations (Fig. 3).

Although clumpiness changed over time, the

general pattern of the landscapes in terms of the

location of pine stands did not change dramatically.

Fig. 1 Sample of simulated

landscapes that represent

the least aggregated

conditions (a) h = 0, and

the most aggregated case

(b) h = 0.5. Both

landscapes have 25% of the

cells as host cells (black)
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At the end of the simulations, the outlines of the large

patches still existed, but they had been perforated by

the SPB disturbances (Fig. 4).

Landscape pattern and process

The effects of landscape structure on the size of

infested area depended on the aggregation of the

susceptible species on the landscape, and the propor-

tion of the landscape occupied by old pines. Old pines

here corresponded to the vulnerable host category

([40 years) in the BDA parameterization. The results

of the 25% and 40% simulations were qualitatively

similar; therefore, only the 25% simulations are

discussed here.

Early in the simulations there was a strong linear

response between host aggregation and the proportion
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of host area experiencing an SPB infestation. About

half of the landscapes (29/60) experienced no

outbreak at all and varied in clumpiness between

0.37 and 0.92, thereby spanning most of the range of

possible aggregations (Fig. 5a). All infestations in

year 50 occurred at sites where old pines account for

more than 80% of the pines on the landscape.

At year 60, the importance of the age of pines on

the landscape becomes clear. Prior to this year cells

with only young pines were rare due to the uniform

age class distributions used in the initial conditions.

However, the infestations that occurred during years

40 and 50 allowed more pine to establish on sites

previously cleared of pine by the SPB, thereby

resulting in cells with primarily young cohorts of

pine. The relationship between clumpiness and pro-

portion of the host area infested remains strongly

positive and linear (slope = 1.0631; r2 = 0.9922;

F(1,26) = 3320, P \ 0.0001). Those landscapes with

less than 80% old pines, however tended to have

lower proportions of infested cells (Fig. 5b).

After 50 years, the number of landscapes where

old pines accounted for more than 80% of the total

pines decreased dramatically. By year 70 there were

no such landscapes. SPB attacks kept the pine

populations fairly young (Fig. 6). Later years in

the simulations continued to show the positive

relationship between aggregation and proportion of

host area infested (Fig. 5c). The strength of this

relationship was, however, slightly less (slope =

0.87, r2 = 0.8496; F(1,29) = 163.8, P \ 0.0001).

Persistence of pine on the landscape

In all simulations the proportion of pine on the

landscape increased slightly until year 40, when the

Fig. 4 A simulated landscape in year 150. Initial conditions

were h = 0.5 (highly aggregated), p = 25% (initial amount of

pine). Grey areas are cells with no pines, black areas are cells

that contain pines. See Fig. 1b for conditions in year 0
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of h. There are a total of 60 possible points in each figure. All

results are for landscapes with 25% pine in year 0. Circles

represent cases where there are few (\80%) old pines

([40 years) on the landscape. Triangles are cases with many

old pines on the landscape. (a) Year 50, (b) Year 60, (c) Year 110
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pines were considered to be extremely susceptible to

SPB infestation. After year 40, the proportion of

pines decreased markedly (Fig. 7). When h was

high, the initial reduction in pine proportion was

greater than when h was low (Fig. 8). However, by

the end of the simulation pine had declined further

in the landscapes with low h than those with high h

values.

Discussion

Our simulations suggest that landscape structure can

influence the severity and extent of insect outbreaks.

A considerable body of empirical research has devel-

oped regarding the response of insect herbivory to

finer-scale spatial heterogeneity, i.e., the interspersion
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of host and non-host trees within a stand (e.g., Jactel

and Brockerhoff 2007). These studies indicate that

insect herbivory is greater in pure stands than in those

containing a mix of host and non-host tree species, a

pattern that has been found for SPB-affected stands

(Schowalter and Turchin 1993; Zhang and Zeide

1999). Several mechanisms have been proposed to

explain why herbivory is lower in mixed stands:

lower host availability, physical and chemical barri-

ers to host location, and a greater abundance of

predators and parasites (Jactel and Brockerhoff

2007).

In contrast, few studies have been conducted to

investigate the implications of such neighborhood-

scale forest heterogeneity for broader patterns of

insect disturbance across a landscape. Jactel et al.

(2002) found less insect infestation in pine stands in

France that were located near mixed-species hard-

wood stands than in pine stands distant from

hardwood stands, a broader pattern consistent with

the finer-scale studies. Similarly, Powers et al. (1999)

discovered that landscape ‘‘windows’’ with large

patches of mature Douglas-fir (Pseudotsuga menzie-

sii) were more vulnerable to bark beetle infestation

than were windows with smaller patches or lower

host abundance. A study of SPB infestations in

Alabama (Ylioja et al. 2005) implied that a landscape

containing small pine patches may be affected less

severely by SPB than would a landscape with larger

aggregations of pine. Our LANDIS simulations

strongly suggest that the degree of forest aggregation

that characterizes a landscape influences the severity

and extent of insect infestations on that landscape.

LANDIS modeling by Sturtevant et al. (2004), who

used BDA to simulate spruce budworm infestations,

projected that greater landscape aggregation would

lead to more highly aggregated outbreaks. Together,

these simulations and empirical studies imply that

highly aggregated forest landscapes will be charac-

terized by more extensive insect infestations, greater

outbreak severity, and larger disturbed patches than

less aggregated forests.

The spatial resolution of our simulated land-

scapes is particularly appropriate for investigating

such patterns. Whereas most previous LANDIS

applications, including (Sturtevant et al. (2004),

use larger cell sizes (e.g. 1 ha), the use of 0.01 ha

cells in this study represents the size of individual

mature trees and thereby incorporates the tree-by-tree

neighborhood interactions important for the develop-

ment of insect infestations (Jactel and Brockerhoff

2007). Although there is debate about the specific

mechanisms by which these fine-scale tree distribu-

tion patterns affect infestations (Jactel and

Brockerhoff 2007), LANDIS incorporates their influ-

ence via the neighborhood modifier. Hence our

simulations predict the emergence of landscape-level

disturbance patterns as a consequence of the charac-

teristic arrangement of tree neighborhoods across a

landscape.

The simulations suggest further that insect distur-

bances can restructure a landscape in ways that

influence the continued impact of that disturbance

agent. Specifically, the simulated SPB outbreaks

altered the aggregation of host cells. These vegetation

changes were the consequence of SPB-related pine

mortality combined with colonization of some of the

disturbed cells by more shade-tolerant hardwoods,

which excluded further pine establishment on those

sites. The disaggregation of the host patches influ-

enced the characteristics of subsequent SPB

outbreaks—regardless of the initial aggregation of

pines, the extent of subsequent outbreaks was related

to the level of pine aggregation at the time step in

which an outbreak occurred (Fig. 5). Therefore SPB

outbreaks rendered the landscapes less susceptible to

extensive outbreaks later, and pines were able to

persist at low levels even on the landscapes that

initially were highly susceptible to SPB outbreaks

(Fig. 8). The interplay between herbivory and pine

forest fragmentation is consistent with the sequence

of SPB infestations and pine fragmentation observed

over several years on an actual landscape (Coulson

and Wunneberger 2000) and, more generally, with

the landscape ecological concept of reciprocal inter-

actions between landscape pattern and process.

Although the disaggregation of pine stands

destroyed the large contiguous patches of pine, the

general outlines of the patches were not erased, but

simply perforated, over the course of the simulations.

This ecological memory (sensu Peterson 2002) was in

part the result of the limited dispersal distances of

trees used. Because the effective and maximum

dispersal distances for our pines were set at 1 and 4

cells (10 and 40 m), in 150 years it is unlikely that

the original structure of the landscape would be

completely erased. Ecological memory also was a

consequence of SPB infestations creating canopy
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gaps that were colonized subsequently by the shade-

intolerant pines. SPB outbreaks, combined with fire,

are thought to play an important role in Table

Mountain pine recruitment (Williams 1998). Interac-

tion between SPB outbreaks and pine recruitment

would appear to favor a feedback that could perpet-

uate the spatial patterns of both pine stands and SPB

outbreaks, consistent with the hypothesis (Peterson

2002) that contagious disturbances interact with the

landscape to generate ecological memory.

The simulation experiments we report here point

toward a broader set of modeling experiments that

need to be conducted to concretely tie the results to

the real world. First, successional patterns of vege-

tation in this environment need to be simulated in an

aspatial context. We have previously shown that

LANDIS is capable of simulating the successional

trajectories for the southern Appalachian Mountains

(Lafon et al. 2007). Next, the importance of distur-

bances (fire and SPB) were evaluated singly and in

concert with regard to succession on these sites

(Waldron et al. 2007). The current study extends the

previous ones to address specifically how neutral

landscapes with controlled spatial characteristics

respond to and influence SPB outbreaks. A further

step in establishing these reciprocal interactions is to

simulate actual landscapes with varying pine config-

urations, and to compare the simulated patterns to

empirical observations on outbreak patterns during

recent SPB outbreaks. Additional simulations for an

actual landscape will explore how changes in man-

agement decisions or disturbance frequencies and

intensities affect it. Such a real landscape will be

subjected to multiple disturbances and have a more

complicated spatial structure due to the presence of

multiple landtypes representative of the complex

terrain of the southern Appalachians. The results

presented here are, thus, one step in a larger

simulation endeavor aimed at increasing understand-

ing of the effects of SPB on the southern Appalachian

landscape.

Although we do not specifically address manage-

ment issues in this paper, the results presented here

should have implications for forest managers in the

southern Appalachians concerned with the restoration

of Table Mountain pine stands. In a recent review of

the state of landscape ecological research, Turner

(2005a) notes that landscape ecological principles in

general, and the effect of pattern on process in

particular, have become important in formulating

management plans for conservation areas and har-

vested forests in some instances (e.g. Bruinderink

et al. 2003; Dupré and Ehrlén 2002). In the southern

Appalachian Mountains, landscape structure has been

altered considerably since the beginning of the 20th

century by extensive logging and burning, which

favored pine expansion (Williams 1998), followed by

fire suppression. Large tracts of land dominated by

mature pines that are particularly susceptible to SPB

outbreaks have become common. Recently there has

been interest in restoring southern Appalachian

ecosystems to a more ‘‘natural’’ functioning. Our

results imply that restoration scenarios for Table

Mountain pine should consider not only how best to

implement fire or other techniques to regenerate pines

in decadent stands (e.g., Williams 1998), but also

how management actions influence the spatial

arrangement of pine stands throughout a landscape.
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